

Lyra Payment Gateway

UPI Static QR Integration

Document version 1.0

Lyra Payment Gateway - UPI Static QR integration

All rights reserved – p. 3

Version Date Comment

1.0

February 2021 Initial release for review
set mid in orderInfo

This document and its contents are confidential. It is not legally binding. No part of this document may be reproduced and/

or forwarded in whole or in part to a third party without the prior written consent of Lyra Network. All rights reserved.

For technical inquiries or support, you can reach us from Monday to Friday, 9am to
6pm

by phone: +91 (022) 33864910 / 911

by email: support.pg.in@lyra.com

from the Merchant Back Office: (Menu: Help > Contact support)

For any support request, please provide your shop ID (8-digit number).

HISTORY OF THE DOCUMENT

TECHNICAL SUPPORT

Lyra Payment Gateway - UPI Static QR integration

All rights reserved – p. 4

UPI Static QR Code provides a smooth checkout experience as it automatically
launches the preferred UPI mobile app during payment.

Compared to the dynamic QR Code, the static QR does not encode any order
information nor any transaction amount. It encodes a static reference to the merchant
account and as such may be printed by the merchant and displayed at his/her desk
counter.

In order to create a Static QR code, a URL needs to be generated using minimal
specifications as directed by NPCI:

Parameter name Description Mandatory Value

pa Payee VPA M
Merchant vpa,
to be shared by Lyra

pn Payee Name M Merchant name

tr Transaction ref id O
Static order reference, as per
merchant.
Optional for static QR code

mode Transaction mode M 01 = QR code

orgid ID origination M 000000

 Sample URL:

upi://pay?pa=lyra.p000999.p0001234@bankname&pn=SuperRetailStore&
&mode=01&orgid=000000

Once the URL is created it can be encoded into a QR code by any suitable library.

Sample QR code:

1. UPI Static QR Code

Lyra Payment Gateway - UPI Static QR integration

All rights reserved – p. 5

The merchant registers a webhook url to receive HTTP POST notifications from Lyra
when the UPI payment is complete.

The webhook url must be publicly accessible.

2.1 Webhook content

The body of the webhook request contains a charge resource which holds payment
information. The most important fields are described below.

Parameter name Description Value

uuid Unique Charge ID 32 alphanumeric characters, e.g.
27019964b16b46d5b13795aaecff18ff

date Charge creation date e.g. 2021-01-08T10:10:21.329+00:00

status Charge status PAID

orderId Order Id randomly generated by Lyra

orderInfo Order additional info contains the MID used for the payment

currency Currency INR

paid Amount paid by the
customer, in paise

In paise, e.g. 56380 -> 563.80 INR

transactions Array of payment
transaction information

contains a single UPI transaction

Example of charge resource :
{

 "uuid": "67c6a38023554c639cf54f9e19fd747c",

 "date": "2021-02-04T17:25:30.000+00:00",

 "expiryDate": "2021-02-05T17:25:30.000+00:00",

 "status": "PAID",

 "orderId": "583508",

 "currency": "INR",

 "amount": 41095,

 "paid": 41095,

 "due": 41095,

 "refunded": 0,

 "customer": {

 "uid": null,

 "name": null,

 "phone": null,

 "email": "test@lyra-network.com",

 "address": null,

 "city": null,

 "state": null,

 "zip": null,

 "country": null

 },

 "orderInfo": "mid=p0001234",

2. Webhook notification

Lyra Payment Gateway - UPI Static QR integration

All rights reserved – p. 6

 "attempts": 1,

 "testMode": true,

 "dropReason": null,

 "paymentLink": "https://api.in.lyra.com/charge/67c6a38023554c639cf54f9e19fd747c",

 "transactions": [

 {

 "payment_option": "UPI",

 "status": "ACCEPTED",

 "date": "2021-02-04T17:25:39.000+00:00"

 }

]

}

The merchant shall do the following:

1. check that the status is PAID
2. extract the amount from the paid field
3. extract the merchant vpa from the orderInfo field

2.2 Webhook security

Since the webhook url is a public url it must be protected against malicious use or
data tampering.

The request is signed following the Digest Headers Drat and the HTTP Message
Signature draft from the IETF (Internet Engineering Task Force).

References:
HTTP Signature: https://tools.ietf.org/html/draft-ietf-httpbis-message-signatures-01
HTTP Digest Headers: https://tools.ietf.org/html/draft-ietf-httpbis-digest-headers-04
HTTP Semantics: https://tools.ietf.org/html/draft-ietf-httpbis-semantics-12

Basically a digest is computed from the request body and the digest is signed with
the shop key. The digest and the signature are placed in HTTP headers.

e.g.

POST /

HTTP Headers

content-type: 'application/json'

digest: 'SHA-256=/U+c6wqyNUmaDzlT6MxMHDE+w1FRyiCAvAqsljnv8Jw='

signature: 'v1=:3/bA+uT86y1hQVI1beH6txZGIWrCBNTeOIwfU9aF1no=:'

signature-input: 'v1=(*created content-type digest); alg=hmac-sha256;

keyid="44247028.test"; created=1610717375'

HTTP Body

{"uuid":"7f4b634a78054183b91fb06ade5549cd","date":"Jan 15, 2021 6:59:34

PM","expiryDate":"Jan 16, 2021 6:59:34

PM","status":"PAID","orderId":"fv9sfjzw","currency":"INR","amount":836991,"paid":836991,"d

ue":836991,"refunded":0,"customer":{"uid":"customer1234","name":"Payzen

https://tools.ietf.org/html/draft-ietf-httpbis-message-signatures-01
https://tools.ietf.org/html/draft-ietf-httpbis-digest-headers-04
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-12

Lyra Payment Gateway - UPI Static QR integration

All rights reserved – p. 7

Customer","phone":"2554562523","email":"emailId@emailId.com"},"attempts":1,"testMode":true

}

The merchant must cross-check the digest and the signature to guarantee the
integrity of the data.

Failure to check the signature will expose the merchant to data
tampering and/or fraudulent use of the webhook.

2.3 Cross-check the request digest

1. Compute the SHA-256 digest from the request body
2. Convert the digest to BASE64 character string
3. Compare the result with the value of the Digest HTTP header. It should match.

Pseudo-code

val checksum = sha256(request.body)

request.headers.Digest = 'SHA-256=' + base64(checksum)

2.4 Cross-check the request signature

1. Extract the keyId value from the signature-input HTTP Header. It indicates the

shop id and the test environment which was used to sign the request, e.g.
44247028.test for test transaction on shop 44247028 and
44247028.prod for live transaction.

2. Extract the created value from the signature-input HTTP Header. It indicates the
UNIX timestamp which was used to sign the request, e.g. 1610717375

3. Extract the value of the content-type HTTP Header, e.g. application/json
4. Take the digest value computed in the previous step or from the digest HTTP

header.
5. Concatenate the timestamp, the content type and the digest with the exact

format detailed in the pseudo-code below
6. Sign the concatenated string with HMAC-SHA-256 algorithm and the shop key.

Make sure to use the correct test or production shop key.
7. Convert the result to BASE64 character string
8. Compare the result with the value of the signature HTTP header. It should match.

Pseudo-code
val shopId = request.headers['signature-input'].keyId

val timestamp = request.headers['signature-input'].created

val contentType = request.headers['content-type']

val digest = request.headers['digest']

val toSign = '*created: ' + timestamp + '\n'

 + 'content-type: ' + contentType + '\n'

Lyra Payment Gateway - UPI Static QR integration

All rights reserved – p. 8

 + 'digest: ' + digest

val signature = hmacSha256(toSign, shop.key)

request.headers['Signature'] = 'v1=:' + base64(signature) + ':'

2.5 Signature kit

A kit is readily available to verify the signature in different languages (javascript,
typescript, PHP, etc.). Please get in touch with our support team.

